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ABSTRACT: In this paper, we prove some common fixed point results satisfying generalized contractive 
conditions of integral type in intuitionistic fuzzy metric spaces using the notion of occasionally weakly 

compatible maps. Our results extend and generalize known results of fixed point theorems in metric spaces, 

fuzzy metric spaces and intuitionistic fuzzy metric spaces.   
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I. INTRODUCTION 

The concept of Fuzzy sets was initially investigated by 

Zadeh [16] as a new way to represent vagueness in 

everyday life. Subsequently, it was developed by many 

authors and used in various fields. To use this concept 

in Topology and Analysis, several researchers have 
defined Fuzzy metric space in various ways. Atanassov 

[3] introduced the concept of  Intuitionistic fuzzy sets 

by generalizing the notion of fuzzy set by treating 

membership as a fuzzy logical value has to be 

consistent (in the sense ��(�) + ��(�) ≥ 1). ��(�)	��	��(�) denotes degree of membership and 

degree of non – membership, respectively. All results 

hold of fuzzy sets can be transformed intuitionistic 

fuzzy sets but converse need not be true. In 2004, Park 

[10] defined the notion of intuitionistic fuzzy metric 

space with the help of continuous t-norm and 

continuous t-conorm. Since the intuitionistic fuzzy 

metric space has extra conditions see [6],[15] modified 

the idea of intuitionistic fuzzy metric space and 

presented the new notion of intuitionistic fuzzy metric 

space with the help of continuous t-norm and 

continuous t-conorm. Branciari [4] gave a fixed point 

result for a single mapping satisfying Banach's 

contraction principle for an integral type inequality.  

The authors [2, 4, 5, 11,14] proved fixed point theorems 

using contractive conditions of integral type.  

II. BASIC DEFINITIONS AND PRELIMINARIES 

Definition 2.1. [13] A binary operation 

*:[0,1]x[0,1]→[0,1] is called a t-norm * satisfies the 

following conditions: 

(i) * is continuous, 

(ii) * is commutative and associative, 

(iii)  a * 1 =a for all a ∈ [0, 1], 

(iv) a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, 

d ∈ [0,1]. 

Example 2.1.  a * b = ab and  a * b=min{a, b}. 

Definition 2.2. [13] A binary operation 

◊:[0,1]x[0,1]→[0,1] is said to be continuous  t-conorm    

if it satisfied the following conditions: 

(i) ◊ is associative and commutative, 

(ii) a ◊ 0 = a for all a ∈ [0,1], 

(iii) ◊ is continuous, 

(iv) a ◊ b ≤ c ◊ d whenever a ≤ c and b ≤ d for each a, b, 

c, d ∈	[0,1] 

Example 2.2.    a ◊ b  =  min(a+b, 1) and a ◊ b  =  

max(a, b) 

Definition 2.3. [1] A 5- tuple (X, M, N, *, ◊) is called 

intuitionistic fuzzy metric space if X is an arbitrary non 
empty set, * is a continuous t-norm, ◊ continuous t-

conorm   and M, N are fuzzy sets on X² x [0,∞] 
satisfying the following conditions: 

For each x, y, z∈ X and t, s > 0 

(IFM-1)          M(x , y, t) + N(x, y, t) ≤ 1, 

(IFM-2)          M(x, y, 0) = 0, for all x, y in X, 

(IFM-3)          M(x, y, t) = 1 if and only if x=y, 

 (IFM-4)           �(�, �, �) = 	�(�, �, �),  

 (IFM-5)          �(�, �, �) ∗ �(�, �, �) ≤ �(�, �, � + �), 
 (IFM-6)          �(�, �, . ): �0,∞	] → �0,1]	is	left	continuous, 
 (IFM-7)          lim)→∞ �(�, �, �) = 1, 

 (IFM-8)          *(�, �, 0) = 	1,	 
 (IFM-9)          *(�, �, �) = 	0,	if and only if x = y, 

 (IFM-10)        *(�, �, �) = 	*(�, �, �),	 
 (IFM-11)  					*(�, �, �) ◊ *(�, �, �) ≥ *(�, �, � + �), 
 (IFM-12)       *(�, �, . ): �0,∞	] → �0,1]	is	right	continuous, 
 (IFM-13)      lim)→∞*(�, �, �) = 0. 
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Then (M, N) is called an intuitionistic fuzzy metric on 

X. The function M(x, y, t) and N(x, y, t) denote the 

degree of nearness and degree of non nearness between 

x and y with respect to t, respectively. 

Remark 2.1. Intuitionistic Fuzzy Metric space, M(x, 

y,.) is non decreasing and N(x, y, .) is non increasing 

for all x, y ∈ [0, 1].  
Example 2.3. [10]  Let (X, d) be a metric space. Define 

a * b = ab and a ◊ b = min{1, a+b }, for all a, b ∈ [0, 1] 

and let M and N be fuzzy sets on X² x (0, ∞) defined as 

follows: 

 M(x, y, t) = 
)

)/0(1,2) and N(x, y, t) = 
0(1,2)

)/0(1,2)       for all 

x, y ∈ X and all t > 0. 

then (M, N) is called an intuitionistic fuzzy metric 

space on X. We call this intuitionistic fuzzy metric 

induced by a metric d the standard intuitionistic fuzzy 

metric. 

Remark 2.2. Note that the above examples holds even 

with the t- norm a * b = min{a, b} and t- conorm a ◊ b= 

max{a, b}and hence (M, N) is an intuitionistic fuzzy 

metric with respect to any continuous t – norm and  

continuous t –conorm.  

Definition 2.4. [1] A sequence {�3} in intuitionistic 

fuzzy metric space (X, M, N, *, ◊) is said to be Cauchy 

sequence if for all t > 0 and p >0,  

                   lim3→∞ �4�3/5, �3, �6 =
1	��		 lim3→∞*4�3/5, �3 , �6 = 0														 
The sequence {�3} converge to a point � ∈ 7 if for all t 

> 0, 

 lim3→∞ �(�3 , �, �) = 1	��		 lim3→∞ *(�3 , �, �) =0	.													 
An Intuitionistic Fuzzy metric space (X, M, N, *, ◊) is 

said to be complete if every Cauchy sequence in it 

converges to a point in it. 

Definition 2.5. [7] Two self mappings A and S of an 

Intuitionistic Fuzzy Metric space (X, M, N, *, ◊) are 

said to be compatible if and only if lim3	→∞�(89�3 , 98�3	, t) →1		and		 lim3	→∞ *(89�3, 98�3	, t) → 0		for all t > 0 

whenever   <�3= is a sequence in X such that  9�3,8�3	 → >	?@A	�@BC	>	D	7	��	 → ∞ . 

Definition 2.6. [8] Two self mappings A and S of a 

metric space (X, d) are said to be occasionally weakly 

compatible (owc) if and only if there is a point x in X 

which is coincidence point of A and S at which A and S 

commute. 

Lemma 2.1[11] Let (X,d) be a metric space. If f and g 

be self maps on X and let f and g have a unique point of 

coincidence, w = fx = gx, then w is the unique common 

fixed point of f and g. 

We define above definitions and lemma in intutionistic 

fuzzy metric spaces as: 

Definition 2.7. Two self mappings A and B of an 

Intuitionistic Fuzzy Metric space (X, M, N, *, ◊) are 

said to be weakly compatible if they commute at their 

coincidence point x, i. e. Ax = Bx  implies ABx = BAx 
for some x in X. 

Definition 2.8. Two self mappings A and S of an 

Intuitionistic Fuzzy metric space (X, M, N, *, ◊) are 

said to be occasionally weakly compatible (owc) if and 

only if there is a point x in X which is coincidence point 

of A and S at which A and S commute. 

Lemma 2.2. [1] Let  (X, M, N, *, ◊) Intuitionistic fuzzy 

metric space, If there exists k ∈ (0, 1 )  such that for all 

x, y ∈ X,  M(x, y, kt ) ≥ M(x, y, t )  and ,  N(x, y, kt ) ≤	N(x, y, t ) for all t > 0, then x = y. 
Lemma 2.3. Let (X, M, N, *, ◊) be an Intuitionistic 

Fuzzy metric space. f and g be self maps on X and let f 

and g have a unique point of coincidence, w = fx = gx, 

then w is the unique common fixed point of f and g. 

III. MAIN RESULTS 

Theorem 3.1. Let (X, M, N,*,◊) be an intuitionistic 

fuzzy metric space with continuous � ∗ @AB and 

continuous � − F@@AB ◊. Let A, B, S and T be self 

mappings of X. Let the pairs (A, S) and (B, T) be owc. 

For all �, � ∈ 7, there exist non increasing, non 

decreasing continuous functions G,Ψ: �0,1] → �0,1] 
such that G(�) > �,Ψ(t) < �	?@A	�JJ	� ∈ (0, 1). For 

every t > 0 there exist K ∈ (0,1)such that 

                             L M(�)��N(�1,O2,P))
Q ≥ G RL M(�)��S(�1,O2,))

Q T                                     …(3.1) 

and    

                    L M(�)��U(�1,O2,P))
Q ≤ Ψ RL M(�)��3(�1,O2,))

Q T                                              …(3.2) 

Where M: V/ → V/ is a lebesgue integrable mapping which is summable, non negative such that  

W M(�)��X
Q

> 0	?@A	C�Fℎ		Z > 0 

and 

�(8�, [�, �) = min	<�(9�, \�, �), �([�, 9�, �), �(9�, 8�, �), �([�, \�, �), �(8�, \�, �), ] 2. �(9�, 8�, �)
1 + �([�, \�, �)_= 

and  
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*(8�, [�, �) = max	<*(9�, \�, �), *([�, 9�, �), *(9�, 8�, �), *([�, \�, �), �(8�, \�, �), ] 2. *(9�, 8�, �)
1 + *([�, \�, �)_= 

for all �, � ∈ 7  and t  > 0. Then, there is a unique common fixed point of A, B, S and T. 

Proof: As the pair (A, S) and (B, T) are owc, so there are points �, � ∈ 7 such that 8� = 9� and [� = \�. We 

claim that 8� = [�. By (3.1), (3.2) we have, 

 

W M(�)��N(�1,O2,P))
Q

≥ G(W M(�)��abc	<N(d1,e2,)),N(O2,d1,)),N(d1,�1,)),N(O2,e2,)),N(�1,e2,)),R f.g(hi,ji,k)
lmg(no,po,k)T=

Q
) 

W M(�)��N(�1,O2,P))
Q

≥ G(W M(�)��abc	<N(�1,O2,)),N(O2,�1,)),N(�1,�1,)),N(O2,O2,)),N(�1,O2,)),R f.g(ji,ji,k)
lmg(no,no,k)T=

Q
) 

 

W M(�)��N(�1,O2,P))
Q

≥ G(W M(�)��abc	<N(�1,O2,)),N(O2,�1,)),q,q,N(�1,O2,)),q=
Q

) 

W M(�)��N(�1,O2,P))
Q

≥ G(W M(�)��N(�1,O2,))
Q

) 

W M(�)��N(�1,O2,P))
Q

> W M(�)��N(�1,O2,))
Q

 

and  

W M(�)��U(�1,O2,P))
Q

≤ Ψ(W M(�)��ars	<U(d1,e2,)),U(O2,d1,)),U(d1,�1,)),U(O2,e2,)),U(�1,e2,)),R f.t(hi,ji,k)
lmt(no,po,k)T=

Q
) 

W M(�)��U(�1,O2,P))
Q

											≤ Ψ(W M(�)��ars	<U(�1,O2,)),U(O2,�1,)),U(�1,�1,)),U(O2,O2,)),U(�1,O2,)),R f.t(ji,ji,k)
lmt(no,no,k)T=

Q
) 

 

W M(�)��U(�1,O2,P))
Q

≤ Ψ(W M(�)��ars	<U(�1,O2,)),U(O2,�1,)),Q,Q,U(�1,O2,)),Q=
Q

) 

W M(�)��U(�1,O2,P))
Q

≤ Ψ(W M(�)��U(�1,O2,))
Q

) 

W M(�)��U(�1,O2,P))
Q

< W M(�)��U(�1,O2,))
Q

 

therefore by lemma 2.2, 8� = [�	D. C. 8� = 9� = [� = \�. Suppose that there is another point z such that 8� = 9� 

then by inequality (3.1),(3.2), we have	8� = 9� = [� = \�	�@	8� = 8�	��	u = 8� = 9� is the unique point of 

coincidence of A and S. By lemma 2.3, w is only common fixed point of A and S. Similarly, there is a unique point 

z in X such that � = [� = \�.	We now show that � = u. By (3.1),(3.2), we have, 

W M(�)��N(v,w,P))
Q

= W M(�)��N(�v,Ow,P))
Q

≥ G(W M(�)��abc	<N(dv,ew,)),N(Ow,dv,)),N(dv,�v,)),N(Ow,ew,)),N(�v,ew,)),Rf.g(hx,jx,k)
lmg(ny,py,k)T=

Q
) 

≥ G(W M(�)��abc	<N(v,w,)),N(w,v,)),N(v,v,)),N(w,w,)),N(v,w,)),Rf.g(x,x,k)
lmg(y,y,k)T=

Q
) 

   

≥ G(W M(�)��abc	<N(v,w,)),N(w,v,)),q,q,N(v,w,)),q=
Q

) 

≥ G(W M(�)��	N(v,w,))
Q

) 

> W M(�)��	N(v,w,))
Q
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and 

W M(�)��U(v,w,P))
Q

= W M(�)��U(�v,Ow,P))
Q

≤ Ψ(W M(�)��abc	<U(dv,ew,)),U(Ow,dv,)),U(dv,�v,)),U(Ow,ew,)),U(�v,ew,)),Rf.t(hx,jx,k)
lmt(ny,py,k)T=

Q
) 

≤ Ψ(W M(�)��abc	<U(v,w,)),U(w,v,)),U(v,v,)),U(w,w,)),U(v,w,)),Rf.t(x,x,k)
lmt(y,y,k)T=

Q
) 

  

≤ Ψ(W M(�)��abc	<U(v,w,)),U(w,v,)),Q,Q,U(v,w,)),Q=
Q

) 

≤ (W M(�)��	U(v,w,))
Q

) 

< W M(�)��	U(v,w,))
Q

 

Therefore by lemma 2.2, we have u = �, hence z is a common fixed point of A, B, S and T. For uniqueness, let u be 

another common fixed point of  A, B, S and T. Then by (3.1),(3.2), we have 

W M(�)��N(w,z,P))
Q

= W M(�)��N(�w,Oz,P))
Q

≥ G(W M(�)��abc	<N(dw,ez,)),N(Oz,dw,)),N(dw,�w,)),N(Oz,ez,)),N(�w,ez,)),R f.g(hy,jy,k)
lmg(n{,p{,k)T=

Q
) 

≥ G(W M(�)��abc	<N(w,z,)),N(z,w,)),N(w,w,)),N(z,z,)),N(w,z,)).R f.g(y,y,k)
lmg({,{,k)T=

Q
) 

   

≥ G(W M(�)��abc	<N(w,z,)),N(z,w,)),q,q,N(w,z,)),q=
Q

) 

≥ G(W M(�)��	N(w,z,))
Q

) 

> W M(�)��	N(w,z,))
Q

 

and 

W M(�)��U(w,z,P))
Q

= W M(�)��U(�w,Oz,P))
Q

≤ Ψ(W M(�)��abc	<U(dw,ez,)),U(Oz,dw,)),U(dw,�w,)),U(Oz,ez,)),U(�w,ez,)).R f.t(hy,jy,k)
lmt(n{,p{,k)T=

Q
) 

≤ Ψ(W M(�)��abc	<U(w,z,)),U(z,w,)),U(w,w,)),U(z,z,)),U(w,z,)),R f.t(y,y,k)
lmt({,{,k)T=

Q
) 

  

≤ Ψ(W M(�)��abc	<U(w,z,)),U(z,w,)),Q,Q,U(w,z,)),Q=
Q

) 

≤ (W M(�)��	U(w,z,))
Q

) 

< W M(�)��	U(w,z,))
Q

 

Therefore, by lemma 2.2, we have � = |. Hence z is unique common fixed point of A, B, S and T. 

This complete the proof. 
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Theorem 3.2. Let (X, M, N,*,◊) be an intuitionistic fuzzy metric space with continuous � ∗ @AB and continuous � − F@@AB ◊. Let A, B, S and T be self mappings of X. Let the pairs (A, S) and (B, T) be owc. For all �, � ∈ 7, 
there exist non increasing, non decreasing continuous functions G,Ψ: �0,1] → �0,1] such that G(�) > �,Ψ(t) <�	?@A	�JJ	� ∈ (0, 1). For every t > 0 there exist K ∈ (0,1)such that 

W M(�)��N(�1,O2,P))
Q

≥ G ]W M(�)��S(�1,O2,))
Q

_ 

and      

W M(�)��U(�1,O2,P))
Q

≤ Ψ ]W M(�)��3(�1,O2,))
Q

_ 

 

 

Where M: V/ → V/ is a lebesgue integrable mapping which is summable, non negative such that  

W M(�)��X
Q

> 0	?@A	C�Fℎ		Z > 0 

and 

�(8�, [�, �) = min	<�(9�, \�, �), �([�, 9�, �), �(9�, 8�, �), �([�, \�, �), �(8�, \�, �), ] 2. �(9�, 8�, �)
1 + �([�, \�, �)_= 

and  

*(8�, [�, �) = max	<*(9�, \�, �), *([�, 9�, �), *(9�, 8�, �), *([�, \�, �), �(8�, \�, �), ] 2. *(9�, 8�, �)
1 + *([�, \�, �)_= 

 

for all �, � ∈ 7  and t  > 0. AndG,Ψ: �0, 1]} → �0, 1] such that G(�, �, 1,1, �, 1) < �, Ψ(t, t, 0,0, t, 0) < � for all � ∈ (0, 1). Then, there is a unique common fixed point of A, B, S and T. 

Proof: The proof follows on the lines of theorem 3.1. 
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